Code
Φ-311
Level
Undergraduate
Category
B
Teacher
P. Ditsas, N. Tsamis
ECTS
6
Hours
4
Semester
Spring
Display
Yes
Offered
Yes
Teacher Webpage
Goal of the course
This course aims to provide 3rd and 4th year student with mathematical tool to handle advanced problems in modern theoretical physics.
Program
Monday 11:00-13:00, Room 1
Wednesday 11:00-13:00, Room 1
Wednesday 11:00-13:00, Room 1
Syllabus
- Introductory Complex Analysis: Complex numbers. The complex plane.(2 weeks)
- Complex functions: Complex functions. Branch points. Multivalued functions. Continuity and the derivative of complex functions. Cauchy-Riemann conditions.(2.5 weeks)
- Analytic Functions: Analytic functions and applications.(2 weeks)
Cauchy's theorem and integration. Derivatives of analytic functions. Taylor and Laurent series.Classification of singular points. (2.5 weeks)
- Applications of Residues: Calculation of definite integrals. (2.5 weeks)
Calculation of generalized integrals. (2 weeks)
- Complex functions: Complex functions. Branch points. Multivalued functions. Continuity and the derivative of complex functions. Cauchy-Riemann conditions.(2.5 weeks)
- Analytic Functions: Analytic functions and applications.(2 weeks)
Cauchy's theorem and integration. Derivatives of analytic functions. Taylor and Laurent series.Classification of singular points. (2.5 weeks)
- Applications of Residues: Calculation of definite integrals. (2.5 weeks)
Calculation of generalized integrals. (2 weeks)