

ΓΕΝΙΚΟ ΣΕΜΙΝΑΡΙΟ ΤΜΗΜΑΤΟΣ ΦΥΣΙΚΗΣ

PHYSICS COLLOQUIUM

Thursday, 19 May 2016 17:00 -18:00 3rd Floor Seminar Room

"Lattice effects in high T_c superconductors"

Prof. Efthymios Liarokapis

Department of Physics, National Technical University of Athens

Abstract

Since the discovery of high temperature superconductors (HTS) the role of lattice to the pairing mechanism was questioned due to the small isotope effect on the transition temperature (T_c) . Subsequent measurements have found that isotope effect of T_c is large in underdoped cuprates and it exists in the magnetic penetration depth, the pseudogap temperature, and some other characteristic quantities. But many researchers believe in a purely electronic origin of the pair coupling and ignore any contribution of the lattice in the high T_c superconductivity. Therefore, even now the effect of lattice in the HTS coupling is unclear. Following the discovery of cuprates with the highest up to now T_c at ambient pressures (133K and 164K at high pressures), other compounds have been discovered with most recent the sulphur hydride with even higher T_c (203K) at ~90GPa. The pronounced isotope shift of this compound, consistent with BCS theory, points to an electron-phonon mechanism and shows that conventional coupling can induce very high T_c. In this presentation some experimental results will be presented that indicate the role of lattice in the HTS.